Geometric properties of two-dimensional critical and tricritical Potts models.
نویسندگان
چکیده
We investigate geometric properties of the general q-state Potts model in two dimensions, and define geometric clusters as sets of lattice sites in the same Potts state, connected by nearest-neighbor bonds with variable probability p. We find that, besides the random-cluster fixed point, both the critical and the tricritical Potts models have another fixed point in the p direction. For the critical model, the random-cluster fixed point p(r) is unstable and the other point p(g) > or =p(r) is stable; while p(r) is stable and p(g) < or =p(r) is unstable at tricriticality. Moreover, we show that the fixed point p(g) of a critical and tricritical q-state Potts models can be regarded to correspond to p(r) of a tricritical and critical q'-state Potts models, respectively. In terms of the coupling constant of the Coulomb gas g, these two models are related as gg'=16. By means of Monte Carlo simulations, we obtain p(g)=0.6227(2) and 0.6395(2) for the tricritical Blume-Capel and the q=3 Potts model, respectively, and confirm the predicted values of the magnetic and bond-dilution exponents near p(g).
منابع مشابه
Spontaneous edge order and geometric aspects of two-dimensional Potts models.
Using suitable Monte Carlo methods and finite-size scaling, we investigate critical and tricritical surface phenomena of two-dimensional Potts models. For the critical two- and three-state models, we determine a surface scaling dimension describing percolation properties of the so-called Potts clusters near the edges. On this basis, we propose an exact expression describing this exponent for th...
متن کاملGeometric and stochastic clusters of gravitating Potts models
We consider the fractal dimensions of critical clusters occurring in configurations of a q-state Potts model coupled to the planar random graphs of the dynamical triangulations approach to Euclidean quantum gravity in two dimensions. For regular lattices, it is well-established that at criticality the properties of Fortuin–Kasteleyn clusters are directly related to the conventional critical exp...
متن کاملTricritical Behaviour in Deterministic Aperiodic Ising Systems
We use a mixed-spin model, with aperiodic ferromagnetic exchange interactions and crystalline fields, to investigate the effects of deterministic geometric fluctuations on first-order transitions and tricritical phenomena. The interactions and the crystal field parameters are distributed according to some two-letter substitution rules. From a Migdal-Kadanoff real-space renormalization-group cal...
متن کاملTwo-Dimensional Critical Potts and its Tricritical Shadow
These notes give examples of how suitably defined geometrical objects encode in their fractal structure thermal critical behavior. The emphasis is on the two-dimensional Potts model for which two types of spin clusters can be defined. Whereas the Fortuin-Kasteleyn clusters describe the standard critical behavior, the geometrical clusters describe the tricritical behavior that arises when includ...
متن کاملBackbone exponents of the two-dimensional q-state Potts model: a Monte Carlo investigation.
We determine the backbone exponent X(b) of several critical and tricritical q-state Potts models in two dimensions. The critical systems include the bond percolation, the Ising, the q=2-sqrt[3], 3, and 4 state Potts, and the Baxter-Wu model, and the tricritical ones include the q=1 Potts model and the Blume-Capel model. For this purpose, we formulate several efficient Monte Carlo methods and sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 69 2 Pt 2 شماره
صفحات -
تاریخ انتشار 2004